Математична модель двох зв’язаних елементів гнучкого зв’язку морської прив’язної системи

Kostiantyn S. Trunin

Анотація


Створено математичну модель двох зв’язаних елементів гнучкого зв’язку морської прив’язної системи, що дозволяє розробити алгоритм розрахунку динаміки гнучкого зв’язку при його великих переміщеннях.

Ключові слова


гнучкий зв’язок; морська прив’язна система; зв’язані елементи гнучкого зв’язку; математична модель елемента гнучкого зв’язку морської прив’язної системи; моделювання гнучкого зв’язку

Повний текст:

PDF (Русский)

Посилання


Blinov E. I., Kravtsov V. I., Kravtsov A. V., Nedbaylo A. N. Upravlenie gibkimi protyazhennymi obektami napravlennymi silovymi vozdeystviyami [Controlling prolonged flexible objects with directed force impacts]. Sovremennye tekhnicheskie sredstva, kompleksy i sistemy — Modern technical means, complexes and systems, AAEKS Publ., 2003, no. 1 (11), pp. 43–48.

Gerts G. Sootnoshenie mezhdu eksperimentom, modelyu i teoriey v protsesse estestvennogo poznaniya [Correlation between experiment, model and theory in the process of natural cognition]. Eksperiment. Model. высокиTeoriya. [Experiment. Model. Theory]. Moscow, Nauka Publ., 1982. 333 p.

Poddubnyy V. I., Shamarin Yu. Е., Chernenko D. А., Astakhov L. S. Dinamika podvodnykh buksiruyemykh sistem [Dynamics of underwater towed systems]. Saint Petersburg, Sudostroyenie Publ., 1995. 200 p.

Shamarin Yu. Е. et. al. Dinamika podvodnykh okeanograficheskikh sistem [Dynamics of underwater oceanographic systems]. Кyiv, 2001. 228 p.

Ditrikh Ya. Proektirovanie i konstruirovanie: Sistemnyy podkhod: Per. s polsk. [Design and construction: System approach (translation from Polish)]. Moscow, Mir Publ., 1981. 456 p.

Dmitrochenko О. N. Metody modelirovaniya dinamiki gibridnykh sistem tel s uchetom geometricheskoy nelineynosti [Methods of modelling dynamics of hybrid systems of bodies with account of geometric

non-linearity]. Dinamika, prochnost i nadezhnost transportnykh mashin [Dynamics, strength and reliability of transport vehicles]. Bryansk, BGTU Publ., 2001, pp. 24–34.

Кleyton B., Bishop R. Меkhanikа моrskikh sudov [Mechanics of sea-going vessels]. Leningrad, Sudostroenie Publ., 1986. 436 p.

Nemchinov V. S. Ekonomiko-matematicheskie metody i modeli [Economic and mathematical methods and models]. Eksperiment. Model. Teoriya. [Experiment. Model. Theory]. Moscow, Nauka Publ., 1982. 333 p.

Kosenkov V. M. Kratkiy kurs lektsiy po chislennym metodam: uchebnoe posobie [Short course of lectures on numerical methods: a study guide]. Nikolaev, NUK Publ., 2012. 73 p.

Krivinskiy B. V. Sistemnyy podkhod i modelirovanie — effektivnye metody issledovaniya problem vooruzhennoy borby na more [System approach and modeling — effective methods of studying the problems of sea combat]. Morskoy sbornik — Marine Collection, 1979, no. 11, pp. 20–25.

Yastrebov V. S. Printsipy postroeniya tekhnicheskikh sredstv osvoeniya okeana [Principles of construction of technical means of ocean exploration]. Moscow, Nauka Publ., 1982. 325 p.

[Segormikd L. Primenenie metoda konechnykh elementov [Application of the finite element method]. Moscow, Mir Publ., 1979. 392 p.

Тrunin К. S. Udoskonalennia metodiv proektuvannia gnuchkykh zviazkiv morskykh pryviaznykh system [Improvement of design methods for marine tethered systems]. Materialy Pershoi Mizhnarodnoi NTK «Innovatsii v sudnobuduvanni ta okeanotekhnitsi» [Proceedings of the 1st International Scientific and Technical Conference «Іnnovations in Shipbuilding and Ocean Engineering»]. Mykolaiv, 2010. pp. 137–138.

Trunin K. S. Klasyfikatsiia morskykh pryviaznykh system [Classification of marine lash systems]. Materialy IV Naukovo-tekhnichnoi konferentsii «Zhyvuchist korablia ta bezpeka na mori» (27.05.– 29.05.2009) [Proceedings of the 4th Scientific and Technical Conference «Ship Damage Control and Maritime Safety» dated 27.05.–29.05.2009]. Sevastopol, Sevastopolskyi viiskovo-morskyi ordena Chervonoi Zirky instytut im. P. S. Nakhimova Publ., 2009, pp. 41–42.

Тrunin К. S. Matematicheskaya model morskoy privyaznoy sistemy s gibkoy svyazyu [Mathematical model of the marine tethered system with a flexible connection]. Innovatsii v sudnobuduvanni ta okeanotekhnitsi: materialy V Mizhnarodnoi naukovo-tekhnichnoi konferentsii [Proceedings of the 5st International Scientific and Technical Conference «Іnnovations in Shipbuilding and Ocean Engineering»]. Mykolaiv, 2014. pp. 386–388.

Тrunin К. S. Matematicheskaya model gibkoy svyazi v sostave morskoy privyaznoy sistemy [Mathematical model of the flexible connection within a marine tethered system]. Innovatsii v sudnobuduvanni ta okeanotekhnitsi: materialy VI Mizhnarodnoi naukovo-tekhnichnoi konferentsii [Proceedings of the 6th International Scientific and Technical Conference «Іnnovations in Shipbuilding and Ocean Engineering»]. Mykolaiv, 2015. pp. 300–304.

Dmitrochenko O. N., Pogorelov D. Yu. Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody System Dynamics 10, no. 1, Special issue «Virtual Nonlinear Multibody Systems», 2003, pp. 17–43.




DOI: https://doi.org/10.15589/jnn20170201

Посилання

  • Поки немає зовнішніх посилань.